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Abstract. An analysis based on the available experimental data and second-order closures is made for a
turbulent shear flow over a rotating cylinder in a quiescent fluid. The near-wall behaviour of the non-linear
model for the pressure-strain correlation proposed by Speziale, Sarkar and Gatski [J. Fluid Mech. 245,
227 (1991)] is enlarged; and the methodology proposed by Lai and So [J. Fluid Mech. 221, 641 (1990)] is
adopted to take into account the wall-effects. The radial profile of the curvature parameter, Rs, is examined
in connection with the logarithmic law. It is shown that the log-layer is associated to the region where
the mean velocity profile, V, is related to the power of the radial distance as V ∝ 1/r3. Computations
reveal that this region corresponds to the state with the most destabilizing curvature effects; which can
be chararacterized by the minimum value of the parameter Bc = 2Rs(1 + 2Rs), and not that one of the
parameter B = 2Rs(1 + 2Rs)/(1 + Rs)

2 firstly introduced by Bradshaw [J. Fluid Mech. 36, 171 (1969)]
and extensively used to characterize the turbulence structure in curved flows.

PACS. 47.27.-i Turbulent flows, convection, and heat transfer – 47.32.-y Rotational flow and vorticity

1 Introduction

It is well-known that curvature or rotation effects can
strongly modify the structure of turbulence by stabilizing
or destabilizing it. The flow induced by an infinitely long
and constantly rotating cylinder in a quiescent fluid is a
simplest kind of flow with curved streamlines and it sat-
isfies a boundary layer approximation (see Townsend [1]).
This flow has been investigated experimentally by several
authors. In particular, measurements have been performed
by Nakamura et al. [2,3] and Andersson et al. [4] with re-
gard to the mean and the fluctuating fields. From these
experimental data, it has been shown that, in the region
near the wall, the flow is extremely unstable according to
the Bradshaw stability criterion [5] that will be indicated
latter. In this region the mean velocity profiles do not fol-
low the conventional logarithmic law [2–4]; even though
the production and dissipation of the turbulent kinetic en-
ergy are in equilibrium as for the logarithmic region in the
flat-plate flow. In the outer part of the layer induced by
the rotating cylinder the flow becomes neutral (according
to the same stability criterion) since the mean velocity, V,
is of the form V ∝ 1/r, where r is the radial coordinate,
as the potential flow. In addition, the measurements of
Nakamura et al. [2,3] reveal that in this region (V ∝ 1/r)
the diffusion is of the same order as the dissipation of the
turbulent kinetic energy. However, in other curved flows
such as the Couette flow between rotating cylinders or
the curved channel flow, the importance of the diffusion
process is relatively small (see Pettersson et al. [6]). In the

light of these experimental works, it appears that this sim-
ple curved flow constitutes a non trivial test for one-point
closure models adopted for the pressure-strain correlation
and the diffusive transport of Reynolds stress.

Recently, Speziale et al. [7] have shown that second-
order models are capable of accurately predicting the sta-
bility boundaries for homogeneous shear flow in a rotating
frame. However, no eddy viscosity model, such as the stan-
dard k− ε model, possesses this predictive capability. For
this reason, attention is drawn towards the prediction ca-
pabilities of the second-order model proposed by Speziale
et al. [8] in predicting the flow over a rotating cylinder. In
fact this model gives the best results in terms of statistics
in a large variety of turbulent flows without wall effects,
such as the homogeneous turbulent shear flow in a rotat-
ing frame [8], plane jet and the round jet (see [9]) with
respect to other elaborate models [10,11]. For the diffu-
sive transport of the Reynolds stresses we adopt the usual
model of Daly and Harlow [12] and the model of Hanjalic
and Launder [13]. Even though the transformation of the
Hanjalic and Launder’s model to axisymetric coordinates
produces a great many terms than that of the Daly and
Harlow’s model, the former model appeared superior on
physical grounds [14].

Pointing out that in their study of second-order
closures applied to flows affected by streamline curva-
ture, Pettersson et al. [6] have adopted the widely used
model of Launder et al. [15] with different extensions
to take into account the proximity of the wall: the low
Reynolds number model of Launder and Shima [16] and
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the elliptic relaxation model of Durbin [17]. These authors
found that Durbin’s model better enforces the correct be-
haviour of the wall-normal Reynolds stress components
than the Launder and Shima’s model. In addition, they
showed that substantial improvements of the predictions
are observed when the convective transport of second-
moments is introduced in the Launder et al.’s model [15]
(for more detail concerning this scheme, see Fu et al. [11],
Salhi et al. [18]).

In this paper, we will follow the methodology proposed
by Lai and So [19] in order to derive an asymptotically
(near the wall) correct model for the pressure-velocity-
gradient correlation by using the Speziale et al.’s model
for the pressure-strain correlation. Accordingly, the near-
wall behaviour of this model will be made, and additional
terms will be introduced in the Lai and So’s model.

This paper is organized as follows. The near wall be-
haviour of the Speziale et al.’s model is presented in Sec-
tion 2. In Section 3 we analyze the radial evolution of the
curvature parameter and the Bradshaw number in con-
nection with the logarithmic law proposed by Nakamura
et al. [2]; and we discuss the numerical results with respect
to the experimental data of [3,4]. The state with the most
destabilizing curvature effects is also examined with re-
gard to the Bradshaw parameter. Finally, we present in
Section 4 our concluding remarks.

2 A near-wall behaviour of the SSG model

We will consider a fully developed turbulent flow over a
rotating cylinder in a quiescent fluid. A cylindrical coor-
dinates system (r, θ, z) can be chosen to describe the flow
motion. Here, r, θ and z are the radial, peripheral and ax-
ial coordinates, respectively. For this unidirectional flow
motion, the symmetric, S, and antisymmetric, W, parts
of the mean velocity gradient are of the form,

S =
S

2

0 1 0

1 0 0

0 0 0

 ,

W =
S

2

 0 −(1 + 2Rs) 0

1 + 2Rs 0 0

0 0 0

 , (1)

where S = r∂(V/r)/∂r, is the mean rate of deformation,
V is the peripheral component of the mean velocity and
Rs = (V/r)/S is the curvature parameter.

Standard procedures for determining Reynolds stress
equations in axisymmetric coordinates lead to

∂u2

∂t
− 4SRsuv − d

ν
rr − drr + εrr = Πrr + dprr, (2a)

∂v2

∂t
+ 2S(1 + 2Rs)uv − d

ν
θθ − dθθ + εθθ = Πθθ + dpθθ,

(2b)

∂w2

∂t
− dνzz − dzz + εzz = Πzz + dpzz , (2c)

∂uv

∂t
+ S

(
(1 + 2Rs)u2 − 2Rs(v2)

)
− dνrθ − drθ + εrθ = Πrθ + dprθ, (2d)

where ρ is the mass density; and u, v and w are the fluctu-
ating velocity components respectively, in the radial, pe-
ripheral and axial directions. The dissipation, pressure-
strain correlation and diffusion tensors are respectively
denoted by the letters ε,Π and d. In Cartesian tensor
form they are written as

εij = 2ν∂kui∂kuj, dij = −∂k(uiujuk), dνij = ν∂k(uiuj),

Πij =
1

ρ
(p∂jui + p∂iuj), d

p
ij = −

1

ρ
[∂j(pui) + ∂i(puj)] ,

where p and ν are the fluctuating part of the pressure and
the kinematic viscosity, respectively.

As indicated previously, we adopt for the pressure-
strain correlation,Πij , the second-order model of Speziale,
Sarkar and Gatski [8] (hereafter referred to as the SSG
model); namely,

Πij = −(C1ε+ C∗1P )bij + C2ε(bikbkj −
1

3
IIδij)

+ (α0 − α
∗
0II

1
2 )kSij + α1k(bikSkj + bjkSki

−
2

3
bmnSnmδij) + α2k(bikωjk + bjkωik), (3)

where C1 = 3.40, C∗1 = 1.80, C2 = 4.20, α0 = 4
5 , α

∗
0 =

1.30, α1 = 1.25, α2 = 0.40. Here, II = bijbij is the second

invariant of bij =
uiuj
2K −

1
3δij ; and P = −uvS, k and ε

denote the production rate, the turbulent kinetic energy
and the dissipation rate, respectively.

In order to take into account the wall-reflexion effects
for this model we use the scheme proposed by Lai and
So [19]. Accordingly, the modeling of the wall-reflection
term should compensate, in the vicinity of the wall, the
incorrect modeling of Πij so as the r.h.s. of (2), Π∗ij =
Πij + dνij , provides balance to the difference (εij − dνij),
since only εij and dνij are dominant near a wall. In fact, if
the following expansions for u, v and w are assumed

u = a1(r − r0) + a2(r − r0)2 + a3(r − r0)3 + ....,

v = c1(r − r0) + c2(r − r0)2 + c3(r − r0)3 + ....,

w = e1(r − r0) + e2(r − r0)2 + e3(r − r0)3 + ....,

where ai, ci and ei are random functions of time, θ and z
(see Appendix A), the other terms in the l.h.s. of (2) are of
order (r−a)n, where n ≥ 3. The disappearance of the wall-
reflexion terms far away from the wall are guaranteed by
the introduction of the function fw, which tends towards
zero for high turbulent Reynolds number, Ret = k2/(νε),

Π∗ij = Πij +Πw
ijfw.
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Obviously, the proposal for Πw
ij depends to a large extent

on the εij and Πij models. Follows the near wall analysis
made by Launder and Reynolds [20] for the dissipation
tensor components, Lai and So [19] have shown that the
following model

εij =
2

3
ε(1− fw)δij + (ε/k)

×

[
uiuj + uiuknknj + ujuknkni + ninjukulnknl

1 + 3
2ukulnlnk/k

]
fw,

(4)

gives correct behaviour for εij near a wall. Here,

fw = exp[−(Ret/150)2], (5)

and ni = (1, 0, 0) is the unit vector in the normal direc-
tion to the wall. For high turbulent Reynolds number, the
model (4) will asymptote the relation εij = 2

3εδij , which
satisfies the assumption of local isotropy.

Formally, with respect to the quasi-isotropic model of
Launder et al. [15], which has been used by Lai and So,
the SSG model involves the following additional terms,

−C∗1Pbij + C2ε(bikbkj − (1/3)IIδij)− α
∗
0II

1/2kSij .

The behaviour near a wall of these terms is analysed (Ap-
pendix A). The result indicates that the C1 and C2 terms
are dominant near the wall. Since we adopt here the model
(4) for εij , we propose to introduce an additional term in
the Lai and So’s model for Πw

ij , so as the model would also
compensate for the incorrect behaviour of the C2 term;

Πw
ij = C1εbij − C2ε(bikbkj −

1

3
IIδij)− 2ε(biknjnk

+ bjknink +
2

3
ninj)− 2βk

(
bik(Sjk + ωjk)

+ bjk(Sik + ωik)−
2

3
bmnSnmδij +

2

3
Sij

)
, (6)

where β is a model constant introduced by Shima [21]
(β = 0.45.) The fourth terms in the r.h.s of (6) take into
account for wall reflexion effects in the not too-near-wall
region (Shima [21], Lai and So [22]).

For instance, we adopt for the turbulent diffusion the
Hanjalic and Launder’s model for dij ; namely

dij = Cs∂k

[
k

ε
(uiul∂lujuk + ujul∂luiuk + ukul∂luiuj)

]
,

(7)

where Cs = 0.11. Since the transformation of equation (7)
to axisymmetric coordinates leads to many terms even in
the case of the flow considered here (U = (0, V, 0)), it is
of interest to move the detailed result in Appendix B.

To complete the closure of (2) a model for the
transport equation of ε is required. The modification of
the Hanjalic and Launder’s model [23] for ε made by

Shima [21], reads

D

Dt
ε =

1

r

∂

∂r

(
r

(
ν + Cε

k

ε
u2

)
∂ε

∂r

)
+ Cε1(1 + σfw2)

ε

k
P

− Cε2fε
εε̃

k
+ fw2

[(
7

9
Cε2 − 2

)
εε

k
−

1

2

ε2

k

]
,

(8)

where Cε = 0.18, Cε1 = 1.44, Cε2 = 1.83, ε̃ = ε −
2ν(∂k

1
2 /∂y)2, ε = ε− ν∂2k/∂y2, and y is the normal dis-

tance to the wall. Due to the fact that the extra terms
introduced to define the modified dissipation rates, ε̃ and
ε can lead to considerable numerical problems (see Patel
et al. [24]), Lai and So, who adopted the model (8), sug-
gested to replace ε in ε2/k by ε∗ = ε − 2νk/y2 and to
replace ε in εε/k by ε̃. In a cylindrical coordinates sys-

tem the expression ε̃ = ε − 2ν(∂k
1
2 /∂r)2, can be chosen

(see Salhi and Omri [25]). Although Mansour et al. [26]
found that the coefficient σ to be the Reynolds-number
dependent, we use the Shima’s suggestion, σ = 1 and
fw2 = exp[−(Ret/64)2], fε = 1− 2

9 exp[−R2
et/36].

3 Results and discussion

The governing differential equations, in which the advec-
tion terms are neglected (D(.)/Dt ≈ ∂(.)/∂t), were solved
by the control-volume method. This is performed via a
fully implicit method where a second order, space centered
differencing and a first order time differencing is used (see
Patankar [28]). In addition, we focus attention for inte-
grating source terms S over the control volume and for
the linearisation of the average S = Sc+SpΨ by ensuring

that Sc and Sp are respectively positive and negative [28].
The choice of an appropriate grid depends on the

Reynolds number, Re = V0r0/ν, where V0 and r0 are
the linear velocity and the radius of the rotating cylin-
der. 64− 85 grid points across the flow domain were used
in our calculations. The first point of the nonuniform grid
chosen away from the wall at about r+ ≡ 0.5 (or r+ = 2.5)
when Re = 3.9× 105 (or Re = 0.33× 105).

Indicate that the present near-wall model has been val-
idated on a simple flat-plate boundary layer (Appendix
C).

3.1 Mean velocity profiles and curvature parameter

To characterize the stability of unidirectional curved flows,
Bradshaw [5] introduced, on the grounds of an analogy be-
tween curvature and density stratification, an equivalent
Brunt-Väisälä frequency as

ω2 = 2
V

r2

d

dr
(V r), (9)

(ω2 > 0 for stability). This criterion remains identical to
the so-called Rayleigh’s criterion, which has been derived
mathematically by Synge [28] in the background of a linear
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Fig. 1. Mean velocity profiles, V/V0, versus the dimensionless
radial distance, (r − r0)/r0.

stability problem for axisymmetric disturbances in an in-
viscid revolving fluid (see also Di Prima and Swinney [29],
Leblanc and Cambon [30]). Division by (∂V/∂r)2 of the
equivalent Brunt-Väisälä frequency does not modify this
stability criterion and leads to the following parameter,

B = 2
V/r

∂V/∂r

(
1 +

V/r

∂V/∂r

)
=

2Rs(1 + 2Rs)

(1 +Rs)2
, (10)

which is often used to characterize the turbulence struc-
ture in curved flows. The flow is unstable in the range
−0.5 ≤ B < 0 (i.e. −0.5 < Rs < 0), neutral when B = 0
(i.e. Rs = −0.5 or Rs = 0), or stable otherwise. Since
equation (10) involves the mean velocity we give in Fig-
ure 1 the radial profile of V/V0 versus (r−r0)/r0 for several
values of Re. The results of the SSG model agree with the
experimental data of [4]. With regard to the Bradshaw’s
stability criterion the SSG-predictions indicate that the
flow over a rotating cylinder is unstable (−0.5 < Rs < 0)
and the minimum value of B (B = −0.5) occurs approxi-
matively at (r−r0)/r0 ≈ 0.2 for 3×104 ≤ Re ≤ 3.9×105.
The SSG-predictions also reproduce the experimental pro-
file of B given in [3], even though the model underesti-
mates the value of |B| in the range 0.1 ≤ (r−r0)/r0 ≤ 0.2
(see Fig. 2). Beyond the value (r−r0)/r0 ≈ 0.2 the exper-
imental data are scattered and not conclusive about the
radial position for which the B value is minimum.

We will now analyze the curvature parameter profile
with the help of the experimental study of [3]. The inte-
gration of the mean velocity equation in the peripheral
direction gives,

νS = −
r2
0u

2
τ

r2
+ uv. (11)

Near the wall, the first term in the r.h.s. of (11) is domi-
nant since uv goes to zero at the wall like (r/r0−1)n, where

Fig. 2. Radial distribution of the Bradshaw number, B =
2Rs(1 + 2Rs)/(1 +Rs)

2.

n ≥ 3 (see Appendix A). The asymptotic behaviour of Rs
near the wall is derived,

Rs = −
2

CfRe
+

(
1

2
−

2

CfRe

)
×

[
2

(
r

r0
− 1

)
+

(
r

r0
− 1

)2

+ .....

]
, (12)

where Cf = 2u2
τ/V

2
0 is the drag coefficient. Close to

the wall the curvature effects are not significant since
2/(CfRe) � 1. While, when the flow regime is laminar,
Cf = 4/Re, the curvature parameter Rs takes the value
−0.5 even at the wall. Consequently, the transition be-
tween the laminar and the turbulent regimes is accompa-
nied by an important decrease of |Rs| near the wall.

As indicated previously, [3,4] have applied their mean
flow data to the same logarithmic law as in the flat-plate,

V0 − V

uτ
=

1

0.41
log

(r − r0)uτ
ν

+ 5. (13)

Their comparisons show that the data do not fit this latter
law. The SSG model yields results that exhibit the desta-
bilized curvature effects as the experimental data (Fig. 3).
In the assumption that, the eddy viscosity is scaled by
the dimensionless coordinate r+ = (uτr0/2ν)(1− r2

0/r
2),

(see [2]) or the dissipation length parameter is propor-
tional to r(1 − (r0/r)

2), the following logarithmic distri-
bution for the mean velocity is obtained (see Appendix
D),

V0 − r0V/r

uτ
= A0 log r+ +A1, (14)

where A0 and A1 are constants. Nakamura et al. [3] have
shown that their experimental data are expressed by equa-
tion (14) with A0 = 1.82, A1 = 9.8. Here, uτ is a solution
of the following equation, which can be derived from (14),

V0/(
√

2uτ ) = A3 log10

(
Re
√

2uτ/V0

)
+A4, (15)
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Fig. 3. Logarithmic velocity profiles. (a) (V0−V )/uτ versus uτ (r− r0)/ν for Re = 20 000; (b) (V0−V )/uτ versus uτ (r− r0)/ν
for Re = 33 000; (c) (V0 − V )/uτ versus uτ (r − r0)/ν for Re = 100 000; (d) (V0 − (r0/r)V )/uτ versus (uτr0/2ν)(1− r2

0/r
2) for

Re = 390 000.

where A3 = 3.09 and A4 = 4.79. This latter equation
remains similar to the semi-empirical formula proposed
by Dorfmann [31] with A3 = 4.07 and A4 = −0.6. From
Figure 4 giving the variation of the drag coefficient ver-
sus the Reynolds number, it can be observed that the
SSG-predictions follow equation (15) with A3 = 3.09 and
A4 = 4.79. Before characterizing the region where the log-
arithmic law given by equation (14) is valid, we remark
that the behavior of (V0−r0V/r)/uτ versus r+ yielded by
the SSG model remains similar to equation (14) (if A1 = 6
the predictions follow (14)). Recall that the mean velocity
measurements of Andersson et al. [4] and the drag coef-
ficient law of Nakamura et al. [3] are well reproduced by
the SSG model. Consequently, this can indicate a disparity
between measurements themselves.

In the representation (V0 − r0V/r)/uτ versus r+ there
is a concordance between equation (14) and the experi-
mental data of [3] for r+ ≤ 4000 (this limit corresponds
to (r−r0)/r0 ≤ 0.4 for Re = 3.9×105). However, Figure 5
giving the velocity profiles related to the power of the ra-
dial coordinate, reveals a deviation between the results
yielded by (14) and the experimental data for r+ > 1500
(i.e. (r− r0)/r0 > 0.2). This can also be deduced by com-
paring the radial evolution of the Bradshaw parameter
B tabulated from the following equation for Rs (derived
from (14))

Rs = −
(V0/uτ )r+ −A0r

+ log r+ −A1r
+

A0(Reuτ/V0 − 2r+)
(16)
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Fig. 4. Drag coefficient, Cf = 2u2
τ/V

2
0 , versus the Reynolds

number, Re = V0r0/ν.

Fig. 5. Mean velocity profiles, V/uτ , related to the power
of the dimensionless radial distance, ruτ/ν. Lines: Results
of equation (14); symbols: experimental data of Nakamura
et al. [3].

and the experimental data (see Fig. 2). As shown in Fig-
ure 5, this log-layer, which corresponds to the region of
V ∝ r−3, is followed by two distinct regions of V ∝ r−2

(i.e. Rs = −1/3) and V ∝ r−1 (i.e. Rs = −1/2). Accord-
ing to the Bradshaw’s stability criterion the state with
the most destabilizing curvature effects, which occurs at
Rs = −1/3 (or B = −1/2), corresponds to the region of
V ∝ r−2 (or 0.3 < (r − r0)/r0 < 0.4). In the region of
V ∝ r−1 the mean flow is irrotational and the mean ve-
locity gradient identifies with its symmetrical part since
the absolute vorticity vanishes. Note that for the turbu-
lent Couette flow between rotating cylinders a such region
(V ∝ r−1) has been observed near the centre (see [1]).

Fig. 6. Radial distribution of the turbulent shear stress,
r2uv/(r2

0V
2
0 ) versus (r − r0)/r0.

3.2 Turbulence intensities profiles

The shear stress profile r2uv/(r2
0V

2
0 ), which can be said

to cause the velocity profile, appears in Figure 6 for
Re = 3.3×104, 105. In the region (r− r0)/r0 > 0.1 where
both, computations and experiments indicate that r2uv ≈
constant; the computed shear-stress over-estimates the
experimental data of Andersson et al. [4]. It should be
noted that a correct mean velocity, V , prediction also
gives a correct prediction for the shear stress uv. Accord-
ingly, this over-estimation should be tied probably to the
experiment uncertainties; since the SSG model reproduce
the experimental bahaviour of r2uv/(r2

0u
2
τ ) given in Naka-

mura et al. [3]. The computed turbulence intensity profiles
shown in Figure 7 follow the trends of the experimental
data of [3]. An agreement between computations and mea-
surements is particularly observed in the near-wall region
((r − r0)/r0 ≤ 0.02). This can be explained by the fact
that

– for several wall-flows, Lai and So [19] have showed that
the anisotropic behaviours of the normal stresses in the
region near the wall are correctly predicted by using an
asymptotically correct model for the velocity-pressure-
gradient correlation,

– in this region the curvature effects are not significant
and the flow can be reasonably approximated by a two-
dimensional flow.

In addition, from Figure 7 we remark a relatively better
agreement for the lowest Reynolds numbers. As mentioned
in Section 1, Pettersson et al. [6] found that Durbin’s
model better enforces the correct behaviour of the wall-
normal stresses than the Launder and Shima’s model.
With respect to the predictions of the Durbin’s model the
SSG model broadly better reproduces the normal stresses
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Fig. 7. Radial distribution of the axial (
√
w2/V0), the radial (

√
u2/V0) and the azimuthal (

√
v2/V0) turbulence intensities.

(a) Re = 20 000; (b) Re = 33 000; (c) Re = 100 000.

(the experimental peak-level of the peripheral component
is relatively better reproduced by the Durbin’s model).

Far from the wall, the computed r.m.s profiles nor-
malized by the friction velocity are compared to the ex-
perimental data of [3] for Re = 3.9 × 105 as displayed
in Figure 8. It appears that the model correctly predicts
only the radial components, while it under-estimates the
axial component and the dominant component (i.e. the
peripheral component). This discrepancy particularly ap-
pears on the range 300 < r+ < 1000, where the loga-
rithmic law (Eq. (14)), which has been derived in the
basis of equilibrium between production and dissipation
rates (Appendix D), is valid. Moreover, Salhi al. [18] have
shown that when the diffusion terms are neglected in the
Reynolds stress equations, the commonly used model of
Launder et al. well reproduces the behaviour of the normal
components. Therefore, the deficiency of the present com-
putation is due to the model for the diffusive transport of
the Reynolds stresses. It should be noted that there are no

significant differences between computations of the Han-
jalic and Launder’s model and those of Daly Harlow’s one,
even if the former appeared superior on physical grounds.

3.3 The Bradshaw-number similarity

As mentionned previously, Bradshaw [5] presented an
analogy between rotation curvature and density stratifica-
tion and proposed the parameter B = 2Rs(1 + 2Rs)/(1 +
Rs)

2 to characterize the curved flow stability. This pa-
rameter remains analogous to the Richardson number for
density stratification flows in that it can be regarded as
the square of the equivalent Brunt-Väisälä frequency (ω)
(Eq. (9)) to a typical scale of the shear flow taken as
∂V/∂r. Obviously, if the scale of the shear flow is taken
as the mean rate of deformation S = r∂(V/r)/∂r or the
mean vorticity rate W = r−1∂(rV )/∂r, one respectively
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Fig. 8. Turbulence intensities profiles for Re = 390 000. (a)

radial component, (r0

√
u2/(ruτ )); (b) azimuthal component,

(r0

√
v2/(ruτ )); (c) axial component, (r0

√
w2/(ruτ ).

obtains the following parameters,

B =
ω2

(∂V/∂r)2
=

2Rs(1 + 2Rs)

(1 +Rs)2
,

Bc =
ω2

S2
= 2Rs(1 + 2Rs),

Bw =
ω2

W 2
=

2Rs
(1 + 2Rs)

;

where bothBc andBw being positive for stable case (when
−∞ < Rs < −0.5 or 0 < Rs < +∞) and negative for
unstable case (when −0.5 < Rs < 0) exactly like the
parameter B. Thereby, each of these three parameters can
be used as an indicator of the flow stability. However, we
will now show that it is more convenient to use the Bc
parameter in order to characterize the most destabilizing
curvature effects.

Indicate that, for plane shear flows rotating around
an axis perpendicular to the plane of the mean flow,
Bradshaw [5] proposed the analogous to the Brunt-Väisälä
frequency as ω2 = −2Ω(∂U/∂y − 2Ω). After division by
the typical frequency scale of the shear flow taken as
(∂U/∂y), he obtained the parameter

Bh = 2R(1 + 2R), R = −Ω/(∂U/∂y).

The flow is stable when Bh > 0 (i.e. −∞ < R < −0.5
or 0 < R < +∞) and unstable when Bh < 0 (or
−0.5 < R < 0). Moreover, the variation of Bh versus
R is symmetrical with respect to R = −1/4. These con-
siderations are conserved if one uses instead of (∂U/∂y)
the mean rate of deformation or the mean vorticity rate
for the typical frequency scale of the shear flow.

The particular case where (∂U/∂y) is constant (i.e. ho-
mogeneous shear case) has received a lot of attention as
a test case for turbulence models (see Speziale and Mac
Giolla Mhuiris [7]) since combination of plane shear and
plane rotation induces either a stabilizing or destabilizing
effect (see Salhi et al. [32]). In the case of this flow, it
was shown from the large eddy simulation (LES, Bardina
et al. [33]) and from the rapid distortion theory (RDT,
Bertoglio [34], Kassinos and Reynolds [35], Salhi and
Cambon [37]) that the state with the most destabiliz-
ing effects of rotation occurs at R = −Ω/S = −0.25,
which corresponds to the minimum value of Bh. In terms
of statistics a such state corresponds to the maximum val-
ues of P/kS or ε/kS (see Fig. 9). Accordingly, it is conve-
nient that for the curved flow case the minimum value of
the Bradshaw parameter characterizes the state with the
most destabilizing effects. Therefore this state occurs at
Rs = −1/2 (i.e. V ∝ r−1), Rs = −1/3 (i.e. V ∝ r−2), or
Rs = −1/4 (i.e. V ∝ r−3) respectively, according to Bw,
B or Bc. In the case of unidirectional turbulent curved
flows the available experimental data in the literature do
not permit to relate the extremal values of −P/kS (or
−ε/kS) to the B parameter. Indeed, the experimental
profiles of uv/k = −P/kS versus (r − r0)/r0 for differ-
ent values of Re are scattered (see Fig. 10). From the
SSG-predictions, it appears that the maximum values of
−P/kS and −ε/kS are reached at Rs ≈ −0.22 as for the
case of the homogeneous shear flow. This model weakly
deviates from the Bradshaw number similarity since it
predicts the state with the most destabilizing effects of
rotation at R = −Ω/S ≈ −0.22.

Therefore, the state with the most destabilizing cur-
vature effects appears in the log-layer and not on the
region of V ∝ 1/r2 as suggested by the B and Bw pa-
rameters. Moreover, the log-layer more exhibits a turbu-
lent character than the region of V ∝ 1/r2 as suggested
by the measurements of the intermettency factor, γ (see
Townsend [1]), made by [3] and [4].

4 Conclusion

The turbulent shear flow over a rotating cylinder in a
quiescent fluid has been revisited in this paper using
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Fig. 9. Variation of the dimensionless production and dissipation rates. (a) P/kS versus R = −Ω/S for homogeneous turbulent
shear flow in a rotating frame (RDT results for St = 5); (b) P/kS versus Rs = (V/r)/S for the flow over a rotating cylinder in
a quiescent fluid; (c) −ε/kS versus Rs = (V/r)/S for the flow over a rotating cylinder in a quiescent fluid.

the available experimental data and the predictions of
the non-linear second-order model of Speziale et al. The
methodology proposed by Lai and So has been adopted in
order to take into account the near-wall effects. As sug-
gested by this methodology the velocity-pressure-gradient
correlation is modelled (for a given pressure-strain corre-
lation model) in its entirety in the near-wall region so as
the near-wall behaviour of the modelling Reynolds-stress
equations remains similar to the exact transport equa-
tions. Therefore, the SSG model correctly predicts the
anisotropic behaviour of the normal stresses. Computa-
tions agree with the experimental data especially near the
wall. The difference observed between the model predic-

tions and the measurements, particularly in the outer part
of the boundary layer, can be tied to the uncertainties of
the measurements and to the modelling of the diffusive
transport of the Reynolds stresses.

The profile of the curvature parameter has been exam-
ined and the role of the B parameter, firstly introduced by
Bradshaw, in determining the state with the most destabi-
lizing curvature effects is analyzed. Particularly, the loga-
rithmic law has been investigated in more detail and it has
been shown that this region corresponds to the region of
V ∝ 1/r3. Computations indicate that the maximum val-
ues of the structural parameters −P/kS and −ε/kS occur
in this region, where Bc takes its minimum value (while
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Fig. 10. Radial distribution of, uv/(2k) versus (r− r0)/r0 for
the flow over a rotating cylinder in a quiescent fluid.

B reaches its minimum in the region of V ∝ 1/r2). Based
on LES and RDT results for homogeneous shear flows in a
rotating frame, which indicate that the maximum values
of −P/kS and −ε/kS correspond to the minimum value
of Bh; the use of the Bc parameter for this flow remains
more convenient to characterize the flow stability and the
state with the most destabilizing curvature effects.

Appendix A

The taylor series expansions for the radial, peripheral and
axial fluctuating components of the instantaneous velocity
near the wall are

u = a0 + a1(r − r0) + a2(r − r0)2 + a3(r − r0)3 + ....,
(A.1a)

v = c0 + c1(r − r0) + c2(r − r0)2 + c3(r − r0)3 + ....,
(A.1b)

w = e0 + e1(r − r0) + e2(r − r0)2 + e3(r − r0)3 + ....,
(A.1c)

where ai, ci and ei are random functions of time, θ and z.
The no slip condition at the wall eliminates a0, c0 and e0,
whereas the continuity equation,

∂u

∂r
+
u

r
+

1

r

∂v

∂θ
+
∂w

∂z
= 0,

eliminates a1. Therefore, equation (A.1) reduces to

u = a2(r − r0)2 + a3(r − r0)3 + ...., (A.2a)

v = c1(r − r0) + c2(r − r0)2 + c3(r − r0)3 + ...., (A.2b)

w = e1(r − r0) + e2(r − r0)2 + e3(r − r0)3 + ..... (A.2c)

Accordingly, it is shown that near the wall:

u2 = O((r − r0)4),

v2 = c21(r − r0)2 + 2c1c2(r − r0)3 +O((r − r0)4),

2k = (c21 + e2
1)(r − r0)2 + 2(c1c2 + e1e2)(r − r0)3

+O((r − r0)4),

uv = c1a2(r − r0)3 +O((r − r0)4),

ε = ν[(c21 + e2
1) + 2(c1c2 + e1e2)(r − r0) +O((r − r0)3),

S = −
u2
τ

ν
+ 2

u2
τ

r0nu
(r − r0)− 3

u2
τ

r3
0ν

(r − r0)2

+O((r − r0)3).

From these expressions, the near wall behaviour of the
SSG model for Πij , namely

Πij = −(C1ε+ C∗1P )bij + C2ε(bikbkj −
1

3
IIδij)

+ (α0 − α
∗
0II

1
2 )kSij + α1k(bikSkj + bjkSki

−
2

3
bmnSnmδij) + α2k(bikωjk + bjkωik),

can be deduced.
C1 term

(r, r) C1ν

[
1

3
(c21 + e2

1)−
2

3
(c1c2 + e1e2)(r − r0)

]
+O((r − r0)2),

(θ, θ) C1ν

[
1

3
e2

1 −
2

3
c21

]
+ 2C1ν

[
(c1c2 + e1e2)

×

(
c21

c21 + e2
1

−
1

3

)
− c1c2

]
(r − r0) +O((r − r0)2),

(z, z) C1ν

[
1

3
c21 −

2

3
e2

1

]
+ 2C1ν

[
(c1c2 + e1e2)

×

(
e2

1

c21 + e2
1

−
1

3

)
− e1e2

]
(r − r0) +O((r − r0)2),

(r, θ) − C1νc1a2(r − r0) +O((r − r0)2).

C2 term

(r, r) µ11 + µ12(r − r0) +O((r − r0)2),

(θ, θ) µ21 + µ22(r − r0) +O((r − r0)2),

(z, z) µ31 + µ32(r − r0) +O((r − r0)2),

(r, r) µ42(r − r0) +O((r − r0)2),
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where

µ11 = C2ν(c21 + e2
1)

×

 2

27
−

1

3

( c21

c21+e2
1

−
1

3

)2

+

(
e2

1

c21 + e2
1

−
1

3

)2
 ,

µ12 = 2νC2(c1c2+e1e2)

×

 2

27
−

1

3

( c21

c21+e2
1

−
1

3

)2

+

(
e2

1

c21+e2
1

−
1

3

)2


−
4

3
C2ν

[
c1c2

(
c21

c21+e2
1

−
1

3

)
+e1e2

(
e2

1

c21+e2
1

−
1

3

)]
,

µ21 = C2ν(c21+e2
1)

×

− 1

27
+

2

3

(
c21

c21+e2
1

−
1

3

)2

−
1

3

(
e2

1

c21+e2
1

−
1

3

)2
 ,

µ22 = 2νC2(c1c2+e1e2)

×

− 1

27
+

2

3

(
c21

c21+e2
1

−
1

3

)2

−
1

3

(
e2

1

c21+e2
1

−
1

3

)2


+
4

3
C2ν

[
2c1c2

(
c21

c21+e2
1

−
1

3

)
−e1e2

(
e2

1

c21+e2
1

−
1

3

)]
,

µ31 = C2ν(c21+e2
1)

×

− 1

27
+

2

3

(
e2

1

c21+e2
1

−
1

3

)2

−
1

3

(
e2

1

c21+c21
−

1

3

)2
 ,

µ32 = 2νC2(c1c2+e1e2)

×

− 1

27
+

2

3

(
e2

1

c21+e2
1

−
1

3

)2

−
1

3

(
c21

c21+e2
1

−
1

3

)2


+
4

3
C2ν

[
2e1e2

(
e2

1

c21+e2
1

−
1

3

)
−c1c2

(
c21

c21+e2
1

−
1

3

)]
,

µ42 = C2νc1a2

(
−

2

3
+

c21

c21+e2
1

)
.

Indicate that C∗1 , α0, α
∗
0, α1 and α2 terms are of order

(r − r0)n, where n ≥ 2.

Appendix B

The transformation of the Hanjalic and Launder’s model
for the diffusive transport of the Reynolds stresses to ax-

isymmetric coordinates (r, θ, z), where U = (0, V, 0), gives:

drr = 3Cs
1

r

∂

∂r

[
r
k

ε

(
u2
∂u2

∂r
− 2

(uv)2

r

)]
︸ ︷︷ ︸

DH

− 2Cs
2

r

k

ε

[
uv
∂uv

∂r
+
v2

r
(u2 − v2)

]
︸ ︷︷ ︸

DH

− 2Cs
1

r

k

ε

[
u2
∂v2

∂r
+ 2

(uv)2

r

]
,

dθθ = Cs
1

r

∂

∂r

[
r
k

ε

(
u2
∂v2

∂r
+ 2

(uv)2

r

)]
︸ ︷︷ ︸

DH

+ 2Cs
2

r

k

ε

[
uv
∂uv

∂r
+
v2

r
(u2 − v2)

]
︸ ︷︷ ︸

DH

+ Cs
2

r

∂

∂r

[
r
k

ε

(
uv
∂uv

∂r
+
v2

r
(u2 − v2)

)]

+ 2Cs
1

r

k

ε

[
u2
∂v2

∂r
+ 2

(uv)2

r

]
,

dzz = Cs
1

r

∂

∂r

[
r
k

ε
u2
∂w2

∂r

]
︸ ︷︷ ︸

DH

,

drθ = 2Cs
1

r

∂

∂r

[
r
k

ε

(
u2
∂uv

∂r
+
uv

r
(u2 − v2)

)]
︸ ︷︷ ︸

DH

+ Cs
1

r

k

ε

[
uv
∂(u2 − v2)

∂r
− 4

v2

r
uv

]
︸ ︷︷ ︸

DH

+ Cs
1

r

∂

∂r

[
r
k

ε

(
uv
∂u2

∂r
−

2

r
(uv)2

)]

+ Cs
2

r

k

ε

[
u2
∂uv

∂r
−
uv

r

∂v2

∂r
+
uv

r
v2 −

1

r
(uv)2

]
.

Note that the use of the Daly and Harlow’s model leads to
expressions for dij identical to those underbraced in the
later expressions.

Appendix C

The near-wall model presented in Section 2 is validated
on a simple flat plate flow to insure that it can give
the correct log-layer profile. Figures 11 and 12 show
U+ = U/uτ , P+ = (−uv∂U/∂y)(ν/u4

τ) and ε+ =
ε/(ν/u4

τ) versus y+ = yuτ/ν. The model solutions are
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Fig. 11. Mean velocity profile in boundary layer expressed in
universal coordinates.

Fig. 12. Production (P ) and dissipation (ε) of turbulence en-
ergy near the wall. Symbols represent data of [37].

for Reθ = 7450, where Reθ is the momentum-thikness
Reynolds number. For a given value of Reθ the predicted

value of the quantity CfR
1/6
eθ , where Cf is the skin-friction,

is approximatively constant CfR
1/6
eθ = 0.0122. As shown

in Figure 11 the universal velocity profile is well pre-
dicted (the log-law constants are those recommended by
Patel et al. [24]). Figure 12 shows the corresponding rates
of production and dissipation of turbulence energy. The
model predictions for P+ are in good agreement with Kle-
banoff’s measurements [37] obtained for Reθ = 7150 (see
Durbin [17]).

Appendix D

In the fully turbulent region outside the sublayer equation
(11) reduces to

r2uv = r2
0u

2
τ , (D.1)

and the turbulent kinetic energy equation is of the form

P ≡ −uvS = ε. (D.2)

In fact, in this region the measurements of [3] show that
the production and dissipation are large and in equilib-
rium. Using (D.1), equation (D.2) can be written as

d

dr
(V/r) = −

r0uτ

Lεr2
, (D.3)

where

Lε ≡
|uv|3/2

ε

is the dissipation length parameter (see e.g. Bradshaw [5]).
On the other hand, based on the fact that in the inner layer
of flat-plate flow, Lε = ky where y is the distance from
the wall in the normal direction and k is a constant, we
propose, for the flow over a rotating cylinder, the following
form

Lε = kr

(
1−

r2
0

r2

)
, (D.4)

where the choice of the r.h.s. of (D.4) is motivated by the
mean velocity profile in the viscous sublayer,

V0 −R0V/r

uτ
=
uτr0

2ν

(
1−

r2
0

r2

)
.

Therefore the integration of (D.3) gives rise to

−
r0V/r

uτ
∝ log

[
1

2

(
1−

r2
0

r2

)]
.
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